семинары


30.04.2013

СЕМИНАР ПО АЭРОМЕХАНИКЕ (ФУНДАМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ)

главный корпус ИТПМ, к. 216, 14:00  
вторник 7 мая 2013 г
.
       
«ВОЛНОВОДНАЯ  МОДЕЛЬ КОГЕРЕНТНЫХ  СТРУКТУР»
     

Докладчик:  
 Жаров Владимир Алексеевич, к.ф.-м.н.

(Центральный Аэрогидродинамический Институт им. Н.Е. Жуковского)

 

Аннотация:

Последние экспериментальные и численные исследования подтверждают наличие когерентных структур в турбулентном пограничном слое. Представляет интерес построение упрощенной математической модели этого явления из первых принципов. Одним из содержательных подходов решения этой задачи является волноводная модель развитого турбулентного пограничного слоя. По аналогии с этой моделью из уравнений Навье-Стокса получено нелинейное уравнение для фурье–компонент вертикальной скорости волн Толмина-Шлихтинга, описывающих пульсации в пограничном слое, до третьего порядка по амплитуде в одномодовом приближении. Уравнение содержит малый параметр ε2 ~ δ**/L, где δ** – толщина потери импульса, L – характерный продольный масштаб длины, определяемый по наименьшему декременту волн Толмина-Шлихтинга.

Амплитуды волн представлены в виде суммы когерентной и некогерентной частей, для которых получается система уравнений, содержащих малый параметрε. Для решения этой системы использован метод многих масштабов. В результате для амплитуд когерентной структуры получено уравнение множественного 3-х волнового резонанса. Показано, что динамика множественного 3-х волнового резонанса в представлении дискретного набора n триплетов удовлетворяет инварианту, который представляется квадратичной формой для комплексных амплитуд с действительными весовыми множителями. Если весовые множители положительны, то система совершает финитное движение. Численный анализ на профиле Мускера показал наличие области волновых чисел (α1, β1), в которой весовые множители квадратичной формы положительны.

Для некогерентной части получено замкнутое интегро-дифференциальное уравнение для двухточечной корреляционной функции. Замыкание цепочки уравнений для моментов определено наличием малого параметра ε. Это уравнение содержит источниковый член, определяемый когерентной структурой.


Возврат к списку