семинары
21.12.2025
д.ф.-м.н. А.М. Хлуднева
На семинаре сделает доклад профессор, д.ф.-м.н. Александр Леонидович Скубачевский
(Российский университет дружбы народов им. Патриса Лумумбы)
Название доклада:
Краевые задачи для сильно эллиптических дифференциально-разностных уравнений и их приложения
Аннотация:
Рассматриваются сильно эллиптические дифференциально-разностные уравнения и их
приложения к нелокальным эллиптическим задачам. Доказаны существование и единственность
обобщенного решения сильно эллиптического дифференциально-разностного уравнения с
краевым условием Дирихле. Как следствие этого результата получены достаточные условия
существования и единственности обобщенного решения нелокальной эллиптической задачи
Бицадзе-Самарского. Изложенные выше методы применяются также для исследования
систем дифференциально-разностных уравнений, возникающих при исследовании упругих
деформаций трехслойных оболочек с гофрированным заполнителем.
Семинар «Краевые задачи в областях с негладкими границами»
Во вторник 23 декабря, в 16:00 (по новосибирскому времени), в конференц-зале ИГиЛ СО РАН (1 этаж) состоится заседание семинара «Краевые задачи в областях с негладкими границами» под руководствомд.ф.-м.н. А.М. Хлуднева
На семинаре сделает доклад профессор, д.ф.-м.н. Александр Леонидович Скубачевский
(Российский университет дружбы народов им. Патриса Лумумбы)
Название доклада:
Краевые задачи для сильно эллиптических дифференциально-разностных уравнений и их приложения
Аннотация:
Рассматриваются сильно эллиптические дифференциально-разностные уравнения и их
приложения к нелокальным эллиптическим задачам. Доказаны существование и единственность
обобщенного решения сильно эллиптического дифференциально-разностного уравнения с
краевым условием Дирихле. Как следствие этого результата получены достаточные условия
существования и единственности обобщенного решения нелокальной эллиптической задачи
Бицадзе-Самарского. Изложенные выше методы применяются также для исследования
систем дифференциально-разностных уравнений, возникающих при исследовании упругих
деформаций трехслойных оболочек с гофрированным заполнителем.

