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1. A complex gas�dynamic structure called pseu�
doshock is implemented in long channels under
supersonic�flow drag [1]. In supersonic gas flow,
unsteady processes affecting the flow structure develop
at the interaction with the boundary layer. As follows
from analysis of numerous experimental investigations
of processes of supersonic�flow drag, which were car�
ried out over several dozen years, the phenomena
under investigation are characterized by different
modes, scales, etc. Reviews of the theoretical and
experimental results are given in [2, 3]. The mathe�
matical models of pseudoshock assume, as a rule, a
steady or quasi�steady mode of flow in the region of
transition from supersonic to subsonic flow due to the
development of a turbulent boundary layer. In this
case, the problem remains open concerning what con�
ditions control the shock position in the downstream
flow and how the mechanism of transfer of perturba�
tions for upstream flows with a supersonic “core” is
implemented. The experiments show that the intro�
duction of various perturbations into the flow behind a
pseudoshock (narrowing of the channel, inflow of
mass or energy, and chemical reactions) results in
upstream displacement of the pseudoshock. The peri�
odic mechanical or energy effect on the flow can cause
forced vibrations of the pseudoshock around the new
quasi�steady position [4].

In this study, we propose a model enabling us pos�
sibly to determine the qualitative and quantitative
characteristics of the forced vibrations of the pseu�
doshock under the periodic effect on the flow at the
outlet portion of the channel. Within the framework of

the two�layer scheme of flow (the potential supersonic
core and the turbulent boundary layer), we con�
structed a mathematical model of an unsteady pseu�
doshock in the flat channel describing a continuous
transition from supersonic to subsonic flow. The equa�
tions of motion are represented as the set of five laws of
conservation with the right�hand side. The structure of
steady solutions was analyzed, and the flows in front of
an obstacle were found. On the basis of numerical
modeling, we showed the evolution of the pseu�
doshock under a periodic change in the channel outlet
cross section. Verification of the model by comparison
with the experimental data is carried out.

2. We consider a plane�parallel flow of barotropic gas
in which a pseudoshock is implemented. One of the ver�
sions of the control of downstream conditions is a local
obstacle in the channel providing the transonic mode of
the flow in its vicinity, for example, the Laval nozzle. In
the pseudoshock, the mechanism of transition from
supersonic to subsonic flow is related to the development
of the turbulent boundary layer, the average flow velocity
in which is less than that of the mainstream motion. If we
consider that the boundary layer is formed in the vicinity
of the channel walls, and the flow in the flat long channel
is symmetric with respect to its axes, it suffices to consider
the two�layer scheme of the flow. Under the specified
assumptions, the one�dimensional equations of motion
of the barotropic gas take the form
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Here, ρ is the gas density, h and η are the thicknesses
of the potential and turbulent layers, respectively; u
and v are the velocity of gas in these layers; and the
value of q characterizes the shift of velocity in the tur�
bulent layer. The constants σ, κ, and cf  are the empir�
ical parameters responsible for the intensity of the
mass transfer (the rate of involving the gas into the tur�
bulent layer), the dissipation of energy, and the friction
at the channel walls. The half�width of the channel is
equal to h + η = H0 – z, where the function z = z(t, x)
sets the relative contraction of the channel. The pres�
sure, speed of sound, internal energy, and enthalpy of
the polytrophic gas are set by the formulas

In the dimensionless variables H0 = 1, ρ0 = 1, p0 =

, and  = 1.

Similar two�layer and three�layer models were
already applied for describing turbulent bores and the
mixture layers in shear flows of a fluid with a free
boundary [5, 6].

2.1. The derivation of set (1) is based on averaging
the two�dimensional equations of motion of gas over
the channel cross section in the approximation of the
long�wave theory [5]:

(2)

with the boundary conditions on the axis of symmetry
and the upper wall of the channel

(3)

Here, U and V are the components of the gas�velocity

vector, while e = ρ is the total energy. In the

case of a barotropic gas, the last equation in set (2) is
a consequence of the previous relations.

We assume that the flow is potential; i.e., y ∈ (0, h)
in the layer U = u(t, x). For the averaged description of
the flow in the turbulent boundary layer y ∈ (h, H0 – z),
we use the average velocity of the flow v(t, x) and its
root�mean�square deviation q2(t, x) determined by the
formulas
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With taking into account the identity U = v + (U – v),
we calculate the integrals

(4)

According to [7], the correlation P is small and can be
rejected if the initial data for set (2) satisfy the condi�
tion of weak vorticity Uy = O(δβ), 0 < β < 1 (δ � 1 is the
ratio of the characteristic vertical channel scale H0 and
the horizontal scale L0). Further, we assume that this
condition is fulfilled.

The integration of the first equation of set (2) over
the variable y from zero to H0 – z and the use of
boundary conditions (3) give the law of conservation
of the gas mass in the channel

Following [5], we assume that the rate of involving the
gas from the potential core into the turbulent bound�
ary layer is proportional to qρ. Then the balance rela�
tion of the gas mass in the layers accepts the form of
the first two equations of set (1). The third and fourth
(at cf = 0) equations of set (1) arise from averaging the
second equation in set (2) over the potential�layer
thickness and the height of the entire channel. When
calculating the integrals, we used boundary condi�
tions (3) and formulas (4). The averaging of the law of
conservation of energy (last equation (2)) over the
channel height gives the closure of the fifth equation of
set (1) in the case of cf = 0 and κ = 0.

When modeling real flows, it is expedient to take
into account the friction and energy dissipation. For
this reason, we added the corresponding terms con�
taining the empirical parameters cf  and κ in the right�
hand side of balance relations (1).

For finding the characteristics of set (1) of equa�
tions and constructing the steady solutions, it is conve�
nient to use the consequences:

In the general case, set (1) is not hyperbolic. However,
the presence of at least three material characteristics,
including one contact and two sonic, allows us to use
laws of conservation (1) for constructing the conserva�
tive numerical schemes.
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2.2. During the evolution of flow, the turbulent
boundary layer is extended and, when the axis of sym�
metry y = 0 is achieved, two�layer model (1) passes
into the single�layer model (h = 0). In this case, the
equations of motion take the form

(5)

Equations (5) of the single�layer flow are hyper�

bolic and have one contact  = v and two sonic

characteristics

determining the velocities of propagation of perturba�
tions in the gas. 

3. The plane�parallel steady flows of barotropic gas
within the framework of the assumptions made are
determined from the solution of the equations (the
stroke means differentiation with respect to x)

(6)

Set (6) can be written in the form resolved with respect
to the derivatives

(7)

where

The sign of the determinant Δ indicates the type of
flow: on average, subsonic at Δ < 0, and, on average,
supersonic at Δ > 0.
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For constructing the solution of Eqs. (7), it is nec�
essary to set the conditions at x = x0, i.e., to find the
asymptotics of the steady solution at η → 0. It is
assumed that the flow is supersonic and potential at
the inlet to the channel. Using the second, fourth, and
fifth equations of set (6), it is easy to determine the val�
ues of the functions v and q at η → 0 (the correspond�
ing values are designated by the subscript 0)

(8)

Here we assumed that the derivatives of the functions
ρ, η, u, v, and q are finite at the point x = x0; the coef�
ficient cf  is assumed to be zero for simplicity.

In the region of the single�layer turbulent flow (η =
H0 – z), steady solutions (5) are found from the equa�
tions

(9)

The sign of the value of Δ1 determines the subsonic
(Δ1 < 0) and supersonic (Δ1 > 0) flows. It is easy to
understand that the density of the gas increases
(decreases) in a channel of constant cross section in
the absence of friction in the region of subsonic
(supersonic) flow.

4. Further, we present three test calculations of
flows on the basis of Eqs. (1). The tests include (i)
comparison of the steady solution with the experimen�
tal data; (ii) implementation of the quasi�steady flow
mode in which the pseudoshock position (the line y = h)
coincides with the steady and unsteady equations in
the calculations; (iii) the evolution of the pseudoshock
under periodic variation of the outlet cross section of
the channel. 

4.1. We constructed the numerical solution of the
problem on the interaction of a supersonic gas flow
with a turbulent boundary layer within the framework
of steady Eqs. (7). If the thickness of the potential
supersonic core h vanishes at the point x∗, the solution

in the region x > x∗ is constructed by the model of sin�

gle�layer flow (9). On the input into the direct channel
of the half�width H0 = 1, the following parameters of
the flow are set: u0 = 2, ρ0 = 1, and c0 = 1 (dimension�
less variables). The values of v and q at x = x0 = 2 are
set according to conditions (8), and h0 = H0, η0 = 0.
The calculations are carried out at γ = 1.4, cf = 0.04,
σ = 0.3, and κ = 6.
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The pressure distribution along the channel length
is shown in Fig. 1, where curve 1 represents the exper�
imental data [8, Fig. 2, p. 9] and curve 2 is the solution
of Eqs. (7) and (9). At the specified parameters σ, κ,
and cf, the results of calculation agree well with the
experiment. In the pseudoshock, we observed an
increase in the pressure along the channel in the region
of two�layer flow. As the boundary layers develop, the
pressure growth is slowed down.

4.2. The quasi�steady pseudoshock is modeled on
the basis of Eqs. (1). At t = 0, the supersonic flow hav�
ing velocity u = 2 (the initial thickness of the turbulent
layer η = 0.02, v = u, and q = 0) is set. In this example,
cf = 0, σ = 0.15, while γ and κ correspond to the previ�
ous test. On the inlet cross section of the channel x = 0,
we used the initial data as the boundary conditions; on
the right boundary x = xb = 14, we used the conditions
uN + 1 = uN (ui is the value of functions at the nodal
point x = xi). For carrying out the calculations, the
Nessyahu–Tadmor scheme is applied [9] on a uniform
grid of N = 150 nodes.

The formation of the pseudoshock is carried out
due to the variation of the channel cross section. The
function z(t, x) responsible for it has the form z =
max{ym – am(x – xm)2, 0}, where am = 2, xm = 0.9xb. The
height of an obstacle varies jumpwise, ym = 0.4 at t <
2xb and ym = 0.285 at the subsequent moments of time.
Such a choice of parameters provides for the forma�
tion of the quasi�steady pseudoshock, the position of
which is shown in Fig. 2. Curve 1 corresponds to the
function y = h(t, x) obtained as a result of the solution
of Eqs. (1) and deduced at t = 150. Curve 2 is obtained
from the solution of Eqs. (7) with conditions (8) at the
point x0 = 6.5. The steady solution is constructed in

the region before the local contraction of the channel,
because at the transition through an obstacle, the value
of Δ in Eqs. (7) vanishes (the flow passes from the
supersonic mode into subsonic). For continuation of
the steady solution, it is necessary to carry out the
analysis in a vicinity of a special point. In the expand�
ing turbulent layer, flow drag takes place and the gas
velocity decreases substantially, which results in a
transition, on average, to the subsonic flow in the
vicinity of the obstacle. The steady and unsteady solu�
tions in the region of the pseudoshock practically
coincide before the obstacle.

4.3. Modeling of the evolution of an unsteady
pseudoshock with periodic variation of the outlet cross
section is carried out in a channel of length L = 30 and
half�widths H0 = 1 at γ = 1.4, σ = 0.3, κ = 6, and cf = 0.
The initial data correspond to the previous test: ρ = 1,
u = v = 2, η = 0.02, and q = 0. At the outlet from the
channel, throttling (periodic variation of the cross sec�
tion) was carried out.

In Fig. 3 curve 1 represents the dependence y =
zmax(t)/2, where zmax is the highest value of the function
z(t, x) in the variable x. Within the framework of the
model under consideration, the pseudoshock is
formed at the extreme left point at which the thickness
of the turbulent layer is larger than the set initial small
value. We call this point the pseudo�shock front. Curve 2
in Fig. 3 represents the trajectory of displacement of
the pseudo�shock front normalized to the channel
length L. From the plot, it can be seen that the
pseudo�shock periodically changes position. The
results of calculation of the half�thickness h(t, x) of the
potential supersonic core are shown in Fig. 4. Curves 1
and 2 correspond to the largest deviations of the pseu�
doshock for one cycle of variation of the channel cross
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section set by the equation y = H0 – z(t, x) (curves 3
and 4).

Thus, within the framework of the two�layer
scheme of flow, mathematical model (1) of unsteady
pseudoshock in the flat long channel, which describes
the continuous transition from the supersonic to sub�
sonic flow, was constructed. This model does not yet
pretend to be the final description of the processes of
drag of supersonic flows. The issue is that, in addition
to the forced vibrations of the pseudoshock in the
experiments, the eigenvibrations or self�oscillations of
the set of shocks as a whole were revealed, which is
explained by the presence of inherent characteristic
times or frequencies determined by unsteady pro�
cesses of interaction. For the description of such
effects, the proposed model should be complicated,
particularly with respect to the description of the flow
in the near�wall region. Such a model should contain
an additional size (for example, the length of the sep�
aration zone) or an additional characteristic time.
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